Browsing by Author "Borges, T"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Expanding the Genetic Spectrum of ANOS1 Mutations in Patients with Congenital Hypogonadotropic HypogonadismPublication . Gonçalves, CI; Fonseca, F; Borges, T; Cunha, F; Lemos, MCSTUDY QUESTION: What is the prevalence and functional consequence of ANOS1 (KAL1) mutations in a group of men with congenital hypogonadotropic hypogonadism (CHH)? SUMMARY ANSWER: Three of forty-two (7.1%) patients presented ANOS1 mutations, including a novel splice site mutation leading to exon skipping and a novel contiguous gene deletion associated with ichthyosis. WHAT IS KNOWN ALREADY: CHH is characterized by lack of pubertal development and infertility, due to deficient production, secretion or action of GnRH, and can be associated with anosmia/hyposmia (Kallmann syndrome, KS) or with a normal sense of smell (normosmic CHH). Mutations in the anosmin-1 (ANOS1) gene are responsible for the X-linked recessive form of KS. STUDY DESIGN, SIZE, DURATION: This cross-sectional study included 42 unrelated men with CHH (20 with KS and 22 with normosmic CHH). PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients were screened for mutations in the ANOS1 gene by DNA sequencing. Identified mutations were further investigated by RT-PCR analysis and multiplex ligation-dependent probe amplification (MLPA) analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Hemizygous mutations were identified in three (7.1%) KS cases: a novel splice acceptor site mutation (c.542-1G>C), leading to skipping of exon 5 in the ANOS1 transcript in a patient with self-reported normosmia (but hyposmic upon testing); a recurrent nonsense mutation (c.571C>T, p.Arg191*); and a novel 4.8 Mb deletion involving ANOS1 and eight other genes (VCX3B, VCX2, PNPLA4, VCX, STS, HDHD1, VCX3A and NLGN4X) in KS associated with ichthyosis. LIMITATIONS, REASONS FOR CAUTION: Objective olfactory testing was not performed in all cases of self-reported normosmia and this may have underestimated the olfactory deficits. WIDER IMPLICATIONS OF THE FINDINGS: This study further expands the spectrum of known genetic defects associated with CHH and suggests that patients with self-reported normal olfactory function should not be excluded from ANOS1 genetic testing. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the Portuguese Foundation for Science and Technology. The authors have no conflicts of interest.
- Novel FGFR1 Mutations in Kallmann Syndrome and Normosmic Idiopathic Hypogonadotropic Hypogonadism: Evidence for the Involvement of an Alternatively Spliced IsoformPublication . Gonçalves, C; Bastos, M; Pignatelli, D; Borges, T; Aragüés, JM; Fonseca, F; Pereira, B; Socorro, S; Lemos, MOBJECTIVE: To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). DESIGN: Cross-sectional study. SETTING: Multicentric. PATIENT(S): Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. RESULT(S): Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. CONCLUSION(S): Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms.
- Reliability of Classification by Ophthalmologists with Telescreening Fundus Images for Diabetic Retinopathy and Image QualityPublication . Rêgo, S; Dutra-Medeiros, M; Bacelar-Silva, GM; Borges, T; Soares, F; Monteiro-Soares, M