UCI NEO - Artigos
Permanent URI for this collection
Browse
Browsing UCI NEO - Artigos by Subject "Adiposity"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Body Composition of Infants Born with Intrauterine Growth Restriction: A Systematic Review and Meta-AnalysisPublication . Manapurath, R; Gadapani, B; Pereira-da-Silva, LIntrauterine growth restriction (IUGR) may predispose metabolic diseases in later life. Changes in fat-free mass (FFM) and fat mass (FM) may explain this metabolic risk. This review studied the effect of IUGR on body composition in early infancy. Five databases and included studies from all countries published from 2000 until August 2021 were searched. Participants were IUGR or small-for-gestational age (SGA) infants, and the primary outcomes were FFM and FM. Eighteen studies met the inclusion criteria, of which seven were included in the meta-analysis of primary outcomes. Overall, intrauterine growth-restricted and SGA infants were lighter and shorter than normal intrauterine growth and appropriate-for-gestational age infants, respectively, from birth to the latest follow up. They had lower FFM [mean difference -429.19 (p = 0.02)] and FM [mean difference -282.9 (p < 0.001)]. The issue of whether lower FFM and FM as reasons for future metabolic risk in IUGR infants is intriguing which could be explored in further research with longer follow-up. This review, the first of its kind can be useful for developing nutrition targeted interventions for IUGR infants in future.
- Evolution of Resting Energy Expenditure, Respiratory Quotient, and Adiposity in Infants Recovering from Corrective Surgery of Major Congenital Gastrointestinal Tract Anomalies: A Cohort StudyPublication . Pereira-da-Silva, L; Barradas, S; Moreira, AC; Alves, M; Papoila, AL; Virella, D; Cordeiro-Ferreira, GThis cohort study describes the evolution of resting energy expenditure (REE), respiratory quotient (RQ), and adiposity in infants recovering from corrective surgery of major congenital gastrointestinal tract anomalies. Energy and macronutrient intakes were assessed. The REE and RQ were assessed by indirect calorimetry, and fat mass index (FMI) was assessed by air displacement plethysmography. Longitudinal variations over time are described. Explanatory models for REE, RQ, and adiposity were obtained by multiple linear regression analysis. Twenty-nine infants were included, 15 born preterm and 14 at term, with median gestational age of 35.3 and 38.1 weeks and birth weight of 2304 g and 2935 g, respectively. In preterm infants, median REE varied between 55.7 and 67.4 Kcal/kg/d and median RQ increased from 0.70 to 0.86-0.92. In term infants, median REE varied between 57.3 and 67.9 Kcal/kg/d and median RQ increased from 0.63 to 0.84-0.88. Weight gain velocity was slower in term than preterm infants. FMI, assessed in a subset of 15 infants, varied between a median of 1.7 and 1.8 kg/m2 at term age. This low adiposity may be related to poor energy balance, low fat intakes, and low RQ¸ that were frequently recorded in several follow-up periods.
- The Effect of Long-Chain Polyunsaturated Fatty Acids Intake During Pregnancy on Adiposity of Healthy Full-Term Offspring at BirthPublication . Pereira-da-Silva, L; Cabo, C; Moreira, AC; Papoila, AL; Virella, D; Neves, R; Bridges, KM; Cordeiro-Ferreira, GOBJECTIVE: The adjusted effect of long-chain polyunsaturated fatty acid (LCPUFA) intake during pregnancy on adiposity at birth of healthy full-term appropriate-for-gestational age neonates was evaluated. STUDY DESIGN: In a cross-sectional convenience sample of 100 mother and infant dyads, LCPUFA intake during pregnancy was assessed by food frequency questionnaire with nutrient intake calculated using Food Processor Plus. Linear regression models for neonatal body composition measurements, assessed by air displacement plethysmography and anthropometry, were adjusted for maternal LCPUFA intakes, energy and macronutrient intakes, prepregnancy body mass index and gestational weight gain. RESULT: Positive associations between maternal docosahexaenoic acid intake and ponderal index in male offspring (β=0.165; 95% confidence interval (CI): 0.031-0.299; P=0.017), and between n-6:n-3 LCPUFA ratio intake and fat mass (β=0.021; 95% CI: 0.002-0.041; P=0.034) and percentage of fat mass (β=0.636; 95% CI: 0.125-1.147; P=0.016) in female offspring were found. CONCLUSION: Using a reliable validated method to assess body composition, adjusted positive associations between maternal docosahexaenoic acid intake and birth size in male offspring and between n-6:n-3 LCPUFA ratio intake and adiposity in female offspring were found, suggesting that maternal LCPUFA intake strongly influences fetal body composition.