Name: | Description: | Size: | Format: | |
---|---|---|---|---|
806.35 KB | Adobe PDF |
Advisor(s)
Abstract(s)
BACKGROUND:
Although numerous experimental models of arterialized venous flaps (AVFs) have been proposed, no single model has gained widespread acceptance. The main aim of this work was to evaluate the survival area of AVFs produced with different vascular constructs in the abdomen of the rat.
METHODS:
Fifty-three male rats were divided into 4 groups. In group I (n = 12), a 5-cm-long and 3-cm-wide conventional epigastric flap was raised on the left side of the abdomen. This flap was pedicled on the superficial caudal epigastric vessels caudally and on the lateral thoracic vein cranially. In groups II, III, and IV, a similar flap was raised, but the superficial epigastric artery was ligated. In these groups, AVFs were created using the following arterial venous anastomosis at the caudal end of the flap: group II (n = 13) a 1-mm-long side-to-side anastomosis was performed between the femoral artery and vein laterally to the ending of the superficial caudal epigastric vein. In group III (n = 14), in addition to the procedure described for group II, the femoral vein was ligated medially. Finally, in group IV (n = 14), the superficial caudal epigastric vein was cut from the femoral vein with a 1-mm-long ellipse of adjacent tissue, and an end-to-side arterial venous anastomosis was established between it and the femoral artery.
RESULTS:
Seven days postoperatively, the percentage of flap survival was 98.89 ± 1.69, 68.84 ± 7.36, 63.84 ± 10.38, 76.86 ± 13.67 in groups I-IV, respectively.
CONCLUSION:
An optimized AVF can be produced using the vascular architecture described for group IV.
Description
Keywords
CHLC CPR Arterialized Venous Flaps
Citation
Plast Reconstr Surg Glob Open. 2017 Aug 17;5(8):e1436
Publisher
Wolters Kluwer Health, Inc