Browsing by Author "Matos, T"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Spectrum and Frequency of GJB2 Mutations in a Cohort of 264 Portuguese Nonsyndromic Sensorineural Hearing Loss PatientsPublication . Matos, T; Simões-Teixeira, H; Caria, H; Gonçalves, AC; Chora, J; Correia, MC; Moura, C; Rosa, H; Monteiro, L; O'Neill, A; Dias, O; Andrea, M; Fialho, GOBJECTIVE: To assess the spectrum and prevalence of mutations in the GJB2 gene in Portuguese nonsyndromic sensorineural hearing loss (NSSHL) patients. DESIGN: Sequencing of the coding region, basal promoter, exon 1, and donor splice site of the GJB2 gene; screening for the presence of the two common GJB6 deletions. STUDY SAMPLE: A cohort of 264 Portuguese NSSHL patients. RESULTS: At least one out of 21 different GJB2 variants was identified in 80 (30.2%) of the 264 patients analysed. Two mutant alleles were found in 53 (20%) of these probands, of which 83% (44/53) harboured at least one c.35delG allele. Twenty-seven (10.2%) of the probands harboured only one mutant allele. Subsequent analysis revealed that the GJB6 deletion del(GJB6-D13S1854) was present in at least 7.4% (2/27) of the patients carrying only one mutant GJB2 allele. Overall, one in five (55/264) of the patients were diagnosed as having DFNB1-related NSSHL, of which the vast majority (53/55) harboured only GJB2 mutations. CONCLUSIONS: This study provides clear demonstration that mutations in the GJB2 gene are an important cause of NSSHL in Portugal, thus representing a valuable indicator as regards therapeutical and rehabilitation options, as well as genetic counseling of these patients and their families.
- The Dark Side of the Light: Mechanisms of PhotocarcinogenesisPublication . Valejo Coelho, M; Matos, T; Apetato, MUltraviolet radiation (UVR) can have a beneficial biologic impact on skin, but it is also the most significant environmental risk factor for skin cancer development. Photocarcinogenesis comprises a complex interplay between the carcinogenic UVR, skin, and the immune system. UVB is absorbed by the superficial skin layers and is mainly responsible for direct DNA damage, which, if unrepaired, can lead to mutations in key cancer genes. UVA is less carcinogenic, penetrates deeper in the dermis, and mainly causes indirect oxidative damage to cellular DNA, proteins, and lipids, via photosensitized reactions. UVR not only induces mutagenesis, altering proliferation and differentiation of skin cells, but also has several immunosuppressive effects that compromise tumor immunosurveillance by impairing antigen presentation, inducing suppressive cells, and modulating the cytokine environment. This review focuses upon molecular and cellular effects of UVR, regarding its role in skin cancer development.