Browsing by Author "Phillips, JA"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The PROP1 2-Base Pair Deletion Is a Common Cause of Combined Pituitary Hormone DeficiencyPublication . Cogan, JD; Wu, W; Phillips, JA; Arnhold, IJ; Agapito, A; Fofanova, OV; Osorio, MG; Bircan, I; Moreno, A; Mendonca, BBCombined pituitary hormone deficiency (CPHD) has an incidence of approximately 1 in 8000 births. Although the proportion of familial CPHD cases is unknown, about 10% have an affected first degree relative. We have recently reported three mutations in the PROP1 gene that cause CPHD in human subjects. We report here the frequency of one of these mutations, a 301-302delAG deletion in exon 2 of PROP1, in 10 independently ascertained CPHD kindreds and 21 sporadic cases of CPHD from 8 different countries. Our results show that 55% (11 of 20) of PROP1 alleles have the 301-302delAG deletion in familial CPHD cases. Interestingly, although only 12% (5 of 42) of the PROP1 alleles of our 21 sporadic cases were 301-302delAG, the frequency of this allele (in 20 of 21 of the sporadic subjects given TRH stimulation tests) was 50% (3 of 6) and 0% (0 of 34) in the CPHD cases with pituitary and hypothalamic defects, respectively. Using whole genome radiation hybrid analysis, we localized the PROP1 gene to the distal end of chromosome 5q and identified a tightly linked polymorphic marker, D5S408, which can be used in segregation studies. Analysis of this marker in affected subjects with the 301-302delAG deletion suggests that rather than being inherited from a common founder, the 301-302delAG may be a recurring mutation.
- Whole Exome Sequencing Identifies Multiple Diagnoses in Congenital Glaucoma with Systemic AnomaliesPublication . Reis, LM; Tyler, RC; Weh, E; Hendee, KE; Schilter, K F; Phillips, JA; Sequeira, S; Schinzel, A; Semina, EVThe genetic basis of congenital glaucoma with systemic anomalies is largely unknown. Whole exome sequencing (WES) in 10 probands with congenital glaucoma and variable systemic anomalies identified pathogenic or likely pathogenic variants in three probands; in two of these, a combination of two Mendelian disorders was found to completely explain the patients' features whereas in the third case only the ocular findings could be explained by the genetic diagnosis. The molecular diagnosis for glaucoma included two cases with compound heterozygous or homozygous pathogenic alleles in CYP1B1 and one family with a dominant pathogenic variant in FOXC1; the second genetic diagnosis for the additional systemic features included compound heterozygous mutations in NPHS1 in one family and a heterozygous 18q23 deletion in another pedigree. These findings show the power of WES in the analysis of complex conditions and emphasize the importance of CYP1B1 screening in patients with congenital glaucoma regardless of the presence/absence of other systemic anomalies.